
NOAO, Tucson, AZ
There has been considerable development of text processing and typesetting tools

over the past decade, and more and more scientists are using these complex programs
to produce the material that they publish. Over the past several years, technology for
creating finished-quality charts and graphics has started to come of age: versatile
plotting and drawing programs are now widely available, high-resolution bit-mapped
video displays are becoming commonplace, and laser printer hardware and software
has matured.

 sgi9289.eps

Figure 1: IRAF plot

It is natural for astronomers who are publishing scientific results to desire a
mechanism for merging their graphical and textual data in a way that ensures a certain
integrity in the page layout. Fortunately, the adoption of PostScript1 as a de facto page
description language standard by a substantial fraction of the relevant sectors of the
industry makes it simpler for programmers to set up the machinery.

1    Why PostScript is good
PostScript has a number of merits that make it a good choice as the
language to use for graphics exchange. Most important is that it is a
device-independent means of describing printing on a page, and has
been widely implemented across a variety of printers and display
devices. It is fairly well-documented and tested, so different
implementations work reliably and behave predictably.

Furthermore, PostScript is composed of text using the ASCII
character set. This makes is very easy to transport files on networks,
and they are susceptible to manipulation by standard text processing
tools, e.g., editors, pagers, etc.

1.1    Encapsulated PostScript
It is desirable for graphics inclusions to conform to certain codes of
behavior, so that the graphics can be manipulated readily and reliably.
PostScript can be generated at any of several levels of so-called
structuring conventions, which are a more or less inevitable
consequence of PostScript’s heritage as a programming language.

When a PostScript program is to be interpreted as a simple page
description, it is convenient if it obeys some rules of form. For the
purposes of graphics inclusion, the most important property is that the
PostScript be encapsulated. What this means essentially is that the

1 PostScript is a registered trademark of Adobe Systems
Incorporated.

1

including application can determine the size and location on the page of
the graphic without having to interpret any PostScript code.

The boundaries of such a “capsule” graphic are defined by a
BoundingBox comment that specifies the x and y coordinates of two
opposing corners of the graphic. There are other “do’s and don’ts” in
the quest to produce encapsulated PostScript; however, it is generally
sufficient for the including application to specify that imported
PostScript graphics conform to the encapsulation standard.

2    Overview of the DVIPS commands
This is intended as a cursory look at the commands that can be used to
work with graphics inclusions. It is by no means necessary for authors
to know any of this; markup language writers can easily shield the end-
user from all of the details of the PostScript interface.

A graphic that is delivered to an application in a capsule defined by
a bounding box can be subjected to a limited number of operations:
translation, truncation, scaling, and rotation. Translation, truncation
(called clipping in PostScript context), and scaling can be performed on
each coordinate independently, hence we can identify seven primitive
functions:

hoffset horizontal offset voffset vertical offset
hsize horizontal clip size vsize vertical clip size
hscale horizontal scale factor vscale vertical scale factor
angle rotation angle

For most graphics inclusions, scaling is the most important function. It
is rare to clip or rotate imported graphics, and moving the coordinate
system origin from the current point is often troublesome in a text
formatter. Furthermore, there is usually no reason to alter the aspect
ratio of the graphic, so including encapsulated PostScript is often as
simple as specifying a scale factor or a dimension and reading the file.

 sgi9279.epssgi9259.eps

Figure 2: Dual IRAF plots

2

3    Implications for the AASTEX package

We are concerned with the import of two-dimensional graphics and
grey-scale images into scientific manuscripts and other technical
documentation. At this point in time, it should be adequate to require
that all graphics for import be in the form of encapsulated PostScript,
and to declare that figures will be imported in their entirety and with
the same aspect ratio as in the original. It is then trivial to build some
simple macros based on the epsf substyle that is supplied with the
DVIPS program by its author Tom Rokicki.

The epsf macros we need to worry about are \epsfxsize and
\epsfbox, which perform the two functions we determined in the
preceding section to be critical. For purposes of having prototype
macros, I wrote two simple macros:

=3pc =1 \plotone{FILE} reads the PostScript in FILE and
adjusts the scale such that the x-coordinate width of the graphic
matches the \textwidth of the manuscript. Figure 1 on page 1 is an
example.
=3pc =1 \plottwo{FILE1}{FILE2} reads the PostScript from
two files and scales each to fit across half the \textwidth (actually,
slightly less than half so the graphics don’t collide). Figure 2 on page 2
shows a pair of dueling inclusions.
The arguments to the \plotone and \plottwo commands should
not include additional scaling and rotation information. These
commands are suggested as part of the AASTEX markup conventions,
but it is entirely reasonable for authors to use the markup syntax of
DVIPS for handling encapsulated PostScript graphics. If direct access
to the graphic is desired, it is necessary to use the interface syntax
defined by Rokicki.

 to2.6in psfile=sgi9259.eps angle=180 hoffset=424 voffset=232
vscale=60 hscale=60

Figure 3: Inverted IRAF plot

One has to be careful, though, when using this approach, since the
automatic link between the formatter (LATEX) and the PostScript is
abandoned. One can get great effects, or totally funky ones …

 to3in psfile=sgi9259.eps voffset=-218 hoffset=60 vscale=75
hscale=55 angle=30

3

Figure 4: Mangled IRAF plot

4

